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We describe a new package. UNCMINfor finding a local minimizer of a real

valued function of more than one variable. The novel feature of UNCMIN is that

it is a modular system of algorithms, containing three different step selection

strategies (line search, dogleg. and optimal step) that may be combined with

either analytic or finite difference gradient evaluation, and either analytic, finite

difference, or BFGS Hessian approximation. We present the results of a com-

parison of the three step selection strategies on the problems in More', Garbow,

a d Hillstrom in two separate cases: .using finite difference gradients and Hes-

sians. and using finite difference gradients with BFGS Hessian approximations.

We also describe a second package. REVMIN, that uses optimization algorithms

.identical to UNCMIN but obtains. values of user supplied functions by reverse

communication.
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1. In bouction

This paper describes UNCMIN, a modular system of FORTRAN subroutines

for the solution of the unconstrained minimization problem

rin() :R -R..)

They are intended for the case when f is at least twice continuously

differentiable, although the derivatives do not have to be available analytically.

The algorithms may sometimes solve problems where f is only once continu-

ously differentiable. No restriction is made on the number of variables n, but

since the algorithms store one nxn matrix and solve a system of n linear equa-

tions in n unknowns at each iteration, they are intended mainly for problems of

small to moderate size, with n for example between 2 and 100. UNCMIN will suc-

cessfully solve problems with n 1. iA lthough perhaps not as efficiently as algo-

rithms intended specifically Tor this case.

There are a number of other FORTRAN routines available for solving the

unconstrained minimization, problem, including algorithms in the Harwell, IMSL.

MINPACK, and NAG libraries (see reference section), and the packages by

Shanno and Phua [1980] and Gay (1982]. This paper emphasizes the ways in

which ours is distinctive. Books that describe unconstrained minimization algo-

rithms include Fletcher [1980], Gill, Murray, and Wright [1982]. and Dennis and

Schnabel [1983].

The distinguishing feature of UNCMIN is that it is a modular slwtem of sub-

routines. This means that the user can build a variety of minimization algo-

rithms with UNCMIN, by selecting from among several options for the step selec-

lion process, and for the -evaluation or approximation of Vf and Vef . The possi-

bility of selecting among alternative strategies for derivative evaluation, namely

user-supplied analytical computatioh, finite differences, or BFGS updates, is

S'.
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found i several other packages. The provision of alternative step selection stra-

tegies that can be used interchangeably with the remainder of the routine,

namely a line search, double dogleg, and a locally constrained optimal step

(hereafter referred to as "hookstep"), is rare; in fact we know of no code that

provides both line search and trust region alternatives. The combination of all

these options is believed to be unique. In our experience, these options have

proved useful to users who wish to find conveniently the best method to use on

a particular class of problems. The modular structure also makes the system

very useful as a testing and research tool, because alternative strategies can be

compared in a coitrolled environment, and new approaches for various parts of

the minimization algorithm can be tested readily by substituting one or more

new modules for the corresponding existing modules. Section 2 discusses the

modular structure of our system in more detail.

The FORTRAN subroutines in UNCMIN correspond closely, though not always

exactly, to the pseudo-code in Appendix A of Dennis and Schnabel (1983], and

were designed initially as a companion to this book. The methods used for solv-

ing the unconstrained minimization problem were not intended to be new, but

rather a selection of the best existing algorithms. Inevitably, various original

features were introduced, some of which are discussed in Section 3. We also

paid careful attention to several mundane aspects of the algorithms that usually

are important to users only when they malfunction, namely stopping criteria,

selection of finite difference stepsizes, and treatment of badly scaled problems.

These topics also are included in Section 3.

We tried to pay careful attention to the user interface with our package. An

important feature is the provision of a choice between an easy-to-use calling

sequence, in which the user provides only n, f, and the initial estimate z 0, and

all tolerances and algorithms options are automatically selected, and a more

complicated call in which the user nonetheless needs to set only those options
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desired. Also provided are checking of user-supplied derivatives, and a variety

of output options. These features are discussed briefly in Section 4, and more

fully in Weiss [1980] and in a forthcoming paper. In Section 5 we discuss briefly

the portability and storage requirements of the code, as well as suggestions for

adapting it to small computers.

We have also developed a reverse communication version of our code, REV-

MIN. This version is algorithmically identical to UNCMIN; the difference is that

whenever a function or analytic derivative evaluation is required, the reverse

communication version returns to a dummy driver REVDRV inserted between the

calling program and REVMIN, evaluates the function or derivative, and then re-

calls REVMIN, which resumes the optimization algorithm at the proper place.

This capability is required whenever the evaluation of f (z) requires additional

data from the calling program, and it is inconvenient to pass this information

through FORTRAN common. For example, this is the situation in the three time

series codes in the National Bureau of Standards statistical library STARPAC that

use REVMIN. The need for reverse communication and the conversion of UNCMIN

to REVMIN is discussed in Section 6.

Finally, in section 7 we present the results of a comprehensive set of tests

using the algorithms in UNCMIN on the test problems in More', Garbow, and

Hillstrom [1981]. In particular, we compare the three step selection strategies.

line search, dogleg, and hookstep, in the case when Vf and f both are approx-

imated by finite differences and again when V2f instead is approximated using

BFGS updates. To our knowledge, these are the first such comprehensive and

controlled comparative tests of these global strategies for unconstrained minim-

Ization to be reported. Gay [1982] compares two different BFGS codes, one

using a line search and the other a dogleg.

lie-
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Z Modular Sructure

The advantages of modular design to the organization, development and

testing of any large computer software system are well known. The modular

organization of UNCMIN has another important advantage that we discuss in this

section. This advantage is that we can organize the unconstrained minimization

algorithm into sections that are functionally independent, such as derivative cal-

culation. step selection, and checking stopping criteria We may then supply

alternative modules for each of these sections, so long as they have the same

input and output parameters and perform the same function. We take advan-

tage of this directly by supplying alternative step selection and derivative calcu-

lation modules in UNCMIN. Different combinations of these then provide the user

with a variety of possible algorithms, which is advantageous since no one algo-

rithm seems to be best for all problem classes. This structure permits a user to

compare the effectiveness of the alternative strategies for particular sections of

the algorithm, and determine which is best suited for a particular class of prob-

lems. In addition, an algorithm developer may develop and test a new version of

any module by substituting it for the existing module and comparing the perfor-

nance of the code using the new and old modules.

To illustrate this design, consider the basic structure of an iteration of our

algorithm. In very general terms, it is:

Given , EA'", the best current estimate of the minimizer;

g= Vf (z,) or a finite difference approximation to it;

H = V2f (x,) or a finite difference or BFGS approximation to it:

1. Calculate the Newton step p = -H- 1 g,, or a variation if H is not positive

definite.

2. Using p, determine the next iterate z. ("Step selection strategy")



3. Evaluate g,. = Vf (z.) or an approximation to it.

4. Decide whether to stop. It not:

5. Evaluate H = Vf (z 1.) or an approximation to it.

6. Set z -.z, gr - g + and return to step 1.

r

In UNCMIN. these steps are carried out by the modules listed in Figure 2.1.

There are eighteen possible algorithmic combinations that a user may

select: the cross product of any one of the three step selection strategies (line r

search, dogleg, or hookstep) with any one of the two gradient calculation

methods (analytic or finite difference) and with any one of the three Hessian cal-

culation methods (analytic or finite difference or BFGS update). Some of the

other choices shown in Fig. 2.1 are controlled wholely by the software. When

using finite difference gradients, the routine starts using forward difference

approximations. and switches to central differences only if forward differences

seem to have become too inaccurate at some iteration because very small steps

are being taken in an uphill direction. When finite difference Hessian approxima-

tion is requested, the approximation is made from analytic gradients if they are

available, from function values otherwise. When BFGS approximations to the

Hessian are used, the factored form of the update (see e.g. Goldfarb [1976]) is

used if the step selection strategy is the line search or dogleg: this causes each

iteration to require only O(n2) operations. The factored form does not interface

well with the hookstep strategy, so an unfactored update is used with this step

selection method.

Of the eighteen user-controlled algorithmic possibilities, three probably are

unrealistic, the combinations involving analytic Hessians and finite difference

gradients. Any of the other fifteen combinations might be used in practice. The

default choice (see Section 5) is the line search with finite difference gradients
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Figure 2.1 Modules for Unconstrained Minimization
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Cholesky and using
Decomp- Cholesky
osition Decomp-
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Gradient Difference Difference

EGradient Gradient)

Step 4 Stopping
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Step 5 Analytic cc Finite Finite O- BFGS BFGS
Hessian Difference Difference Update, Update.
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* from from Form Form

Analytic Function I
Gradients Values QR

Decomp-
osition
Update

* - default choice
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and BFGS approximation to the Hessian, but our users have used many other

combinations. A computational comparison of the three step selection stra-

tegies is given in Section 7.

The modular structure of UNCMIN also has been helpful in our development

and testing of new strategies for unconstrained minimization, because we can

often form the desired new algorithm by replacing just one module in UNCMIN.

Then we can compare the performance of the two codes which are identical in

all other respects. We have used the modular system to test new secant updates

(replacing the BFGS module in step 5), to test new step selection strategies

(inserting a new option in step 2), and to test strategies for handling indefinite

Hessians (replacing the first part of step 1). Using modular replacement also

significantly decreases the time required to construct test codes.

Another advantage of our modular design is that several of the modules can

also be used in a similar system of algorithms for solving simultaneous systems

of nonlinear equations. Most importantly, all the step selection algorithms of

step 2 can be used without change. This would significantly reduce the time to

construct additional software for solving systems of nonlinear equations. The

pseudo-code in the appendix of Dennis and Schnabel [1983], which is intended

for both unconstrained minimization and nonlinear equations, also shares

modules in this fashion.

Figure 2.1 does not list all the modules in UNCMIN; in particular, modules

involved in the initialization phase of the algorithm and several service modules

have been omitted. UNCMIN contains a total of 38 subroutines; a pared down

version is described in Section 4. P
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3. Interesting Algorithmic Features

The methods implemented in UNCMIN are described in detail in Dennis and

Schnabel [19831. Our intention in this book was to collect the best e asting algo-

rithms rather than to propose new onet. !nevitably, some new features we-e

Introduced. In this section. we mention briefly the algorithms available in UNC-

MIN, and some of our innovations. We assume that the reader of this section is

familiar with modern algorithms for unconstrained minimization; some

comprehensive references are Fletcher [1980]. Gill, Murray, and Wright 11981].

and Dennis and Schnabel [1983].

The three step selection strategies, a line search, a dogleg, and a hookstep

(locally constrained optimal step), are all fairly standard. The line search is a

normal backtracking line search using safeguarded quadratic interpolation for

the first backtrack and safeguarded cubic interpolation for any subsequent

backtracks at each iteration. It terminates when the condition

f(x) f(c)+ 10- 4Vf( 0 )T (X. -X.) (3.1)

is satisfied for the first time. A second common line search condition

v! =,) ( _==)z Vl(=oz =, #E:. (10-4.1) (3.2)
is not enforced explicitly by the code. Our practical experience is that (3.2) is

virtually always satisfied by the first step to satisfy (3. 1), and that when it is not,

continuing the line search to enforce (3.2) (with, say, = 0.9) makes virtually no

difference in the ultimate efficiency of the algorithm. Also, our line search algo-

rithm is globally convergent without requiring (3.2) due to the safeguards in the* I
backtracking strategy (see Shultz. Schnabel. and Byrd [1982]), except in the

*. BFGS case where no general global convergence result for a line search algo-

rithm exists.

The dogleg strategy implemented is the double dogleg of Dennis and Mei

[1979]. The hookstep algorithm is a minor modification of the Levenberg-

I
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Marquardt algorithm of More' [1978] for nonlinear least squares. Both the

dogleg and the hookstep algorithms can assume that the model Hessian matrix

is positive definite for reasons indicated below. The trust region updating stra-

tegy is fairly standard, and is documented in Dennis and Schnabel [1983]. Both

trust region algorithms satisfy the conditions of Shultz, Schnabel, and Byrd for

global convergence.

The formulas for finite difference derivative approximations are the stan-

dard ones. Stepsizes are calculated automatically according to the following

rules. For forward difference approximations to the gradient (or Hessian

approximation usi.,g analytic gradients), the stepsize used to perturb the iA

component zt of the current vector z is

= sign() 010 a maxi Ixj 1. £ijj, (3.3)
where NDIGITS is the number of accurate digits in the objective function f (z)

and typzkr is a typical magnitude of the ith component of z. If the user does not

supply values for NDIGITS and L1 r. the default values NDIGITS =

-logi(machaps) - corresponding to full accuracy in f (z) - and tpzi = 1 are

used. For justifleation of (3.3). see for example Dennis and Schnabel [1983]. For

central difference approximation of the gradient, or for Hessian approximation

from function values, the stepsize is (3.3) with NDIGITS/2 replaced by NDI-

GITS/3. In our experience, these stepsizes are quite satisfactory unless the

user assumes the default value for NDIGITS when in fact far fewer digits of f (z)

are accurate. In this case, entirely inaccurate derivative approximations may

result. If the user does not know the approximate value of NDIGITS, it may be

estimated easily and accurately by the routine of Hamming [1971] given in Gill,

Murray, and Wright [1981].

When finite difference gradient approximation is selected, our software

starts with forward difference approximation, and switches to central

differences if at some iteration the steplength or trust region becomes so small
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that Ix, -z11 is within the stopping tolerance, even though f(z,) does not

satisfy (3.1). In this case, the iteration is restarted using a central difference

gradient, and central difference gradients are used thereafter. In our experi-

ence, this switch is invoked occasionally at the final iterations of the algorithm,

especially if the stopping tolerance for the gradient is so stringent that it cannot

be satisfied using forward difference gradient approximations.

When BFGS Hessian approximations are requested, a scaled version of the

identity matrix is the initial approximant. All the approximants are positive

definite; in the rare case that

(X+ - XX~ WV (X,) - Vf (x.))..; 0

the update at that iteration is skipped.

A still unresolved problem in unconstrained minimization is what to do when

analytic or finite difference Hessians are used and the current value, say H, is

not positive definite at some iteration. Various strategies have been proposed,

see for example Gill, Murray, and Wright [1981], Gay [19811, Sorensen [1982].

More' and Sorensen [1981], and Shultz, Schnabel. and Byrd [1982]. These are

still being tested and compared. We use a fairly simple approach related to the

approaches of Gill, Murray. and Wright and to the hookstep algorithm. A Chole-

sky factorization of H is attempted; it results in the factorization

LLT=H+D

where D is a non-negative diagonal matrix that is zero if H is positive definite.

The factorization algorithm is similar to Gill. Murray. and Wright's. Then, if DiOO.

the Cholesky factorization of

S=H + minisdd, JIDII "I

is calculated, where sdd is that smallest positive number such that H+sdd'i is

"safely" positive definite. Then R replaces H for the remainder of the iteration.

This approach is more expensive than Gill, Murray, and Wright's, but it is well

hP
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Justified by its relation to the optimal step approach, and it assures global con-

vergence. Various less expensive but moLe complex strategies that assure glo-

bal convergence are described in Shultz, Schnabel. and Byrd.

We paid careful attention to two mundane but important aspects of minimi-

zation algorithms, scaling and stopping criteria. The software package is coded

so that if the user inputs the typical magnitude tyjpzi of each component of z,

the performance of the package is then equivalent to what would result from

redefining the independent variable in the user's function with r

'acaled [/ l/LVpX7

and running the package without scaling. The default value for each typzt is 1.

In our experience, users can usually supply appropriate values for t~pqz, and

most badly scaled problems can be solved successfully using this approach.

Strategies in which the code estimates typx at each iteration are still not well

established, but such a strategy could be incorporated into UNCMIN merely by

adding a rescaling module called once at the start of each iteration.

There are five stopping criteria in UNCMIN: 1) Vf (z+)L-O; 2) zgz,; 3) the

package could not satisfy (3.1) at the last iteration; 4) iteration limit exceeded;

and 5) divergence suspected (f (z) unbounded below or f (z) approaches a finite

value asymptotically from above). We attempted to make the first two tests as

scale independent as possible; see Dennis and Schnabel for details. In our

experience, when the code stops due to Vf (z)-O. it is almost always near a

local minimizer. When it stops because z-z 0 it is usually near a solution: how-

ever this tolerance should be set quite small since these algorithms sometimes

take very small steps while still far from the solution. When the algorithm stops

because the last iteration could not satisfy (3.1), it is sometimes near a solution

and unable to achieve additional accuracy due to finite precision affects; this

Ii
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occurs most often when finite difference gradients are used, and the accuracy

requested is too high. Divergence is tesLed by imposing a very large maximum

step size; if five consecutive steps are at least 99% of this size. divergence is

suspected.

4. User Oriented Features

We have attempted to make UNCMIN easy and helpful to use. This section

discusses three features of UNCMIN included for this reason: alternative calls to

UNCMIN, automatic checking of user-supplied analytic derivatives, and various

levels of printed output.

UNCMIN may be called either with a very simple calling sequence, or with a

more complex sequence in which the user still chooses the amount of informa-

tion supplied and relies upon defaults for the remaining variables. The simple

calling sequence is

CALL OPTIFO (NR, N. X, FCN, XPLS, FPS, GPLS, ITRMCD, A, WRK).

The user supplies the problem dimension N. the matrix and vector work arrays

A and WRK. the row dimension NR of A. the starting value X, and the objective

function FCN. (The other four parameters are output parameters discussed

below.) OPTIFO then calls the subroutine DFAULT to assign default values to all

algorithmic option parameters (method of derivative approximation and step

selection strategy), stopping tolerances, scaling information, level of output, and

several miscellaneous tolerances. Using these defaults it calls subroutine

OPTIF9 which does the minimization. To obtain control of any or all of these

parameters, the user instead writes a driver that first calls DFAULT to set all

input parameters to their default values, then changes only those parameters

for which non-default values are desired, and finally calls OPTIF9, using the
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calling sequence

CALL OTPIF9 (NR. N, X, FCN, DiP'CN. D2FCN, TYPX, TYPF, METHOD.

IEXP, MSG. NDIGIT. ITNLIM, IAGFLG, IAHFLG. IPR, DLT, GRADTL.

STEPMX. STEPTL, XPLS. FPLS. GPLS, ITRMCD, A, WRK).

This allows the user to be concerned with only the minimum number of parame-

ters necessary. For further details, see Weiss [1980].

Automatic checking of derivatives is provided because in our experience,

Incorrectly coded derivatives are a common cause of failure of optimization rou-

tines. When an analytic gradient or Hessian is supplied, UNCMIN automatically

compares its value at the starting point to a finite difference approximation. If

any component of an analytic derivative differs by more than 1% from the

corresponding finite difference component (with safeguarding for near-zero

values), UNCMIN returns with an error termination code. The user may cause

derivative checking to be skipped by supplying an appropriate input parameter

value.

The package returns a termination code ITRMCD. its best approximation to

the minimizer XPLS, and the function and gradient values FPLS and GPLS at

XPLS. The default level of printed output consists of reporting the input param-

eters, a cause of termination message, and parameter, function and gradient

values at the initial and final iterations. By varying the input parameter MSG.

the user may suppress printed output entirely, or may cause the results after

each intermediate iteration to be printed. Even more detailed output useful

mainly for algorithm development and testing may be obtained by activating

output statements that are imbedded as comments in the code. For more

details, see Weiss [1980].

[ 'r
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5. Computer Environment Considerations

This section discusses the languagestorage and floating point environment

requirements of UNCMIN.

The entire package is coded in ANSI 1966 standard FORTRAN, and elicits

only one objection from the PFORT verifier (Ryder [ 1974]). In the subroutine

FSTOFD, a formal parameter which is an nxm matrix is allowed to correspond in

some calls to an actual parameter which is an n-vector. This allows FSTOFD to

be used in calculating both finite difference gradients and Hessians. The excep-

tion is acceptable to virtually all FORTRAN compilers and the violation was made

deliberately on this basis. The package also is acceptable to at least some FOR-

TRAN 77 compilers, though it is not standard due to the use of Hollerith con-

stants.

The real variables in UNCMIN are all single precision, suitable for the equip-

ment of vendors like Cray or CDC whose single precision numbers have 14 or

more base 10 places. 'However the single precision values of IBM or DEC

machines. roughly 7 base 10 places, sometimes are insufficient for uncon-

strained optimization problems. A double precision version of UNCMIN will be

available for such machines. The only machine dependent constants used by the

code are functions of the machine epsilon, which is calculated by the code.

The code contains approximately 3200 lines, 65% of which are comments.

On some small machines, the object code produced is too long and it is prefer-

able to load only those modules which are being used. For example, a subset

consisting of only the modules required for the default algorithmic options

(finite difference gradients, secant Hessian approximations, line search) has

only 2200 lines. We have found that our users easily construct such pared down

versions from our package.

*.* *... .....
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The code requires that the user supply one matrix of size at least nxn and

9 vectors of size at least n for work space, where n is the problem dimension.

The matrix and one of the vectors are used to store one nxn symmetric matrix

and one nxn lower triangular matrix. It would be possible to implement a few of

the methods available in the package using only n 2/ 2+O(n) storage, but this

savings is not made since it is incompatible with the modular structure of our

code.

6. evere Communicaon

The term reverse communication has been used by several authors (Krogh

[1969]; Gill, Murray, Picken, and Wright [1979]; Gay [1980]; More' [1980, 1982])

to describe a program structure in which control is returned to the top level of

the package or to the calling program on every occasion that a new function

value is required. This capability was required to perform unconstrained minim-

izations within several time series codes in the National Bureau of Standard's

STARPAC library. For this reason, we produced a reverse communication ver-

sion of UNCMIN called REVMIN.

The concept and use of reverse communication are quite old. Two early

uses of which we are aware were in Subroutine VD01 of the Harwell Subroutine

Library (see references), written in 1964 by M. J. D. Powell to minimize a non-

linear function of one variable, and in a contour plotting subroutine written in

1965 by C. Lawson, N. Block, and R. Garrett [1965] at Jet Propulsion Laboratory.

Little has been written about the reverse communication process, however,

especially about the transformation of a non-reverse communication package

into a reverse communication package. Therefore, this section discusses in
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some detail the need for REVMIN and the transformation of UNCMIN into REVIN.

In simplified terms, the time series applications have the following form.

The user calls a time series modelling routine, say TIME, passing into TIME a

large amount of data, say TDATA (see Fig. 6.1). One task the time series pack-

age then performs is to set up and solve a maximum likelihood problem of the

form

min TIMEFN (z. TDATA)
zER"

where TIMEFN is a function that it constructs. The difficulty this presents to

UNCMIN or any standard minimization routine is that TDATA must be available

to TIMEFN at each place where TIMEFN is called within UNCMIN, One way to

accomplish this is to pass TDATA through UNCMIN to each subroutine that con-

tains a call to the objective function, by adding the parameter TDATA to each

subroutine argument list along the path to each such calling routine. This is

undesirable since it would require a separate source and object code version of

UNCMIN each time TDATA changed form. (We had three different time series

applications, each with a different version of TDATA consisting of several large

vectors and matrices.)

A second solution is to pass TDATA directly from TIME to TIMEFN via a

labelied COMMON block. However since TDATA is a parameter to TIME, it cannot

be defined by TIME to lie in COMMON and would need to be copied into a work

array in COMMON instead. Since TDATA typically contains vectors with several 7

thousand data values in our applications, this doubling of storage is undesirable.

A third solution is to have the user's program, which constructs TDATA,

pass it to both TIME and TIMEFN via labelled COMMON. This avoids the need to

copy TDATA and no extra storage is used. A disadvantage of this solution is that

* many FORTRAN software packages try to avoid passing arguments through COM-

MON because of potential for name conflicts between COMMONs. In addition, the
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fact that COMMON blocks may not contain dynamically dimensioned arrays

severely limits the applicability of this solution

The reverse communication solution is indicated in Figure 6.2. Each time a

subroutine in UNCMIN needs a value of a TIMEFN (or an analytic derivative, if

supplied by the user) the package records its state, returns up through UNCMIN

to a dummy driver. REVDRV, between UNCMIN and TIME, calls TIMEFN using

TDATA (which has been passed as a parameter to REVDRV), and returns with the

function value down to the point in UNCMIN that requested it. To accomplish

this. UNCMIN is converted by the process described below into a reverse com-

munication package REYMIN that implements the identical optimization algo-

rithm but obtains values of user-supplied functions by reverse communication.

If TDATA changes form, the only changes required to REVDRV are to change its

formal parameter list, its declaration of TDATA. and its call to TIMEFN; REVMIN

is unaffected by the form of TDATA. We emphasize that the normal and reverse

communication versions of a numerical algorithm perform identical calcula-

tions, and differ only in the method of obtaining values of user-supplied func-

tions.

To accomplish the bubbling up and down through the package (the wiggly

arrows in Fig. 6.2). a RETURN statement is inserted in place of each call to a

user-supplied function, say the one in SUB2 in Fig. 6. 1. In addition, a local vari-

able (say SPOT) is added to SUB2 to identify the location in SUB2 of a request

for a function value; it will be used to direct the flow of control to this statement

at the end of the bubbling down phase. Also. one new parameter (say REVPAR)

is added to SUB2 to indicate to the level above whether this is a normal return

(RE VPAR = 0) or a return to obtain a function value (REVPAR > 0); if REVPAR is

positive, its value indicates to REVDRV whether the function, gradient, or Hes-

alan should be evaluated. Finally, the preservation of the values of all local vari-

ables in SUB2 is ensured by placing them in a labelled COMMON block that is

p1
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shared with REVDRV. (In FORTRAN 77 this can be accomplished by means of the

SAVE statement instead.) While this may secm to contradict the avoidance of

COMMON mentioned above, the difference is that the user does not use COMMON.

Another solution is to pass all the local variables to REVDRV through the parame-

ter lists. Then all subroutines and subroutine calls on the path from REVDRV

down to SUB2, in our example only SUB1, are mocified similarly. The statement

"IF (REVPAR .GT. 0) RETURN" is inserted following each subroutine call leading

down the path, and the local variable SPOT is used to identify this subroutine

call, to which SUBI will return control on the way back down. In addition, all the

local variables in SUBI are saved, and RE/PAR is added to the parameter list so

that it may be passed on up.

In this manner, the flow of control is returned to REVDRV. Here, REVPAR is

used by REVDRV to select the user-supplied function to evaluate, with the proper

parameters. After the function call, REVDRV calls RFWMIN, which must return

with the function value to the statement in 311B2 following the point where the

function evaluation was requested. This is accomplished by a GO TO statement

conditional on the values of the parameter REVPAR and the local variable SPOT

which is placed at the beginning of each subroutine on the wiggly path between

REVDRV and SUB2. If REVPAR > 0. meaning that the bubbling down phase of

reverse communication is in process, a computed GO TO, based on the value of

SPOT, takes each subroutine between REVDIZV and SUB2 immediately to the

subroutine call that will send it to the next subroutine down along the wiggly

path. A similar statement in SUB2 sends it to the statement following the point

where the function invocation occurred. If RE VPAR = 0, meaning reverse com-

munication is not in process, the subroutine starts with its original first state-

ment. (The details af passing the normal function X-guments up and the func-

tion value down have been omitted here.)
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The transformation from a normal system of subroutines to a reverse com-

munication version may be accomplished manually; it is facilitated by using a

tool such as DAVE (Osterweil and Fosdick [1976]) to identify all the paths in the

system to calls of user-supplied functions. We believe it would also be possible

to accomplish the transformation by an automatic source to source transforma-

tion tool. A problem that must be recognized, however, is the complications

that can arise due to the aliasing of function names when they are passed as

parameters. This creates the problem that in a statement like CALL FN (...) in

SUB2 in Fig. 6. 1, FN may refer to any one of the user-supplied functions whose

names were input by the user, depending perhaps on the execution path taken

to reach SUB2. For example, this occurs in UNCMIN where the first order for-

ward difference routine FSTOFD includes the input parameter FCN and several

calls of FCN. Here FCN may equate to the name of either the user-supplied

objective function or the user-supplied gradient function, depending, respec-

tively, on whether FSTOFD was called by the driver to compute a gradient or by

the Hessian approximation algorithm to compute a Hessian. In a case like this,

the transformation of UNCMIN into REVMIN must arrange for each function

parameter to be accompanied by an integer parameter identifying the function.

Additional complications arise from the need to ensure that all arguments to

which the optimizer might apply each function are accessible in REVDRV. Furth-

ermore, each distinct set of arguments to which a reverse communication func-

tion may be applied represents a distinct call required in REVDRV. Thus, the

three reverse communications functions of REVMIN (the function FCN, gradient

DIFCN, and Hessian D2FCN) produce seven distinct calls in REVDRV, since the

function is evaluated on two different sets of arguments, the gradient on four,

and the Hessian on one.

There is also at least one minor technical problem in the transformation to

a reverse communication system. If the function call is inside a DO loop (this is
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common, for example in flnite difference routines), the loop must be rewritten

in the primitive way since most versions of FORTRAN do not permit re-entry into

the body of the loop. Analogous problems may occur with other control struc-

tures, for example a call embedded in a logical IF statement.

The additional costs of using a reverse communication version of a system

of numerical algorithms are a small amount of additional storage, a fairly small

increase in the size of the source and object code (in our case, the number of

non-comment source lines increased 15%, from 1670 to 1917). and a consider-

able addition to the cost of executing the algorithm. Using the rough timing

data available on our CYBER 170/750, the increase in CPU time when running

the same test problems using UNCMIN and REVMIN averaged between 25% and

50% for problems where the function is inexpensive to evaluate, although occa-

sionally the change was outside this range. The additional cost was at the higher

end of this range when both the gradient and Hessian were approximated by

finite differences, since this requires many function calls. It was at the lower end

when only the gradient was approximated by finite differences and the Hessian

by secant updates, and would have been lower yet if analytic gradients had been

supplied. Our test problems had dimension between 2 and 20; when using finite

difference gradients, the additional cost of reverse communication increases

with the dimension of the problem. Of course, if the objective function is at all

expensive to evaluate, as it is in many real-world problems such as our time

series example, the additional execution cost due to reverse communication

quickly becomes negligible.

Finally, we mention that the internal procedure mechanism that has been
d

proposed as a part of FORTRAN 8X would eliminate the need for reverse com-

munication. This is because internal procedures would be allowed global access

to variables in other subroutines through the INHERIT statement. In our exam-

ple, TIMEFN would become an internal function with argument x, but TDATA

*6
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would no longer be an argument of TIMEFN. Instead. TIMEFN would include the

declaration INHERIT TDATA which would give TIMIFN access to TDATA whenever

it was called. Thus, the non-reverse communication version of the optimizer

(Fig. 6. 1) would suffice.

7. Comparative Testing

The provision of alternative modules for derivative evaluation and step

selection in UNCMIN affords an excellent controlled environment for compara-

tive testing. In this section, we summarize the results of three comparative

tests we conducted using UNCMIN with the test problems from More', Garbow,

and Hillstrom [ 1981].

The first test compared the performance of our algorithms using analytic

gradients and Hessians to the performance of the same algorithms using finite

difference gradients and Hessians, on a small number of test problems. Table

7.1 shows that in almost all cases, there is very little or no difference in the

number of iterations or function evaluations required by a particular method on

a particular problem (if the extra function evaluations used in the finite

difference approximations are excluded). This is true whether the step selection

strategy is the line search, dogleg, or hookstep. Occasionally there is a substan-

tial difference; ordinarily this is due to the sensitivity of the test problems to

small changes in the sequence of iterates. In two cases a larger difference

occurred because the finite difference method switched to central difference

gradients. (The code switches to central difference gradients when it detects

that a step using a forward difference gradient is in an uphill direction. This

decision usually only occurs after 10 to 20 backtracks and evaluations of f (z) at

one iteration have failed to decrease the current function value, thus causing
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large differences in Table 7. 1.)

In our experience, the results of Table 7.1 are fairly typical; as long as the

gradient stopping tolerance is within the accuracy obtainable using finite

differences gradients, a routine will usually perform about the same using ana-

lytic or finite difference derivatives. For this reason and because it is more indi-

cative of how minimization routines are used in practice, we used finite

differences rather than analytic derivatives in the subsequent tests. On rare

occasions, we noticed that our results were impaired bicause the automatic

stepsizes provided by rules like (3.3) were unsatisfactory.

The other two tests compared the three step selection strategies, line

search, dogleg, and hookstep, in an otherwise identical algorithm. The first test

compared these strategies when using finite difference gradients and Hessians,

while the second compared the same three strategies when using finite

difference gradients and secant (BFGS) approximations to the Hessian. In both

cases, the test problem set was most of the problems in More', Garbow, and

Hillstrom [1981].

We present only a brief simple summary of our test results in this paper.

The reason for this is that we conclude from our tests that, while the number of

iterations, function, and derivative evaluations required by the line search,

dogleg, or hookstep methods to solve a particular problem using the same

d derivative information nay differ significantly, the behavior of the three step

selection strategies averaged over all the test functions is very close. This is

true whether comparing the three strategies using finite difference Hessians, or

using secant approximation Hessians. Furthermore, each method is best, and

each is worst, on some. problems. A more comprehensive reporting of our test

results would merely reinforce this conclusion. Such a report can be found in

Weiss [1980]; these test results ire from an earlier version of our code and differ

* -
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occasionally, but not significantly, from our final results.

Table 7.2 summarizes the comparison between line search, dogleg, and

hookstep when using finite difference gradients and Hessians. It compares the

number of functions evaluations required by each method to solve each test

problem, including the function evaluations required for the finite difference

derivatives. (This statistic is sometimes called "equivalent function evalua-

tions".) If we compared instead the number of iterations required, or separated

derivative evaluations from function evaluations, the results would appear very

similar. (We comment on run times separately below.) For each test problem,

we assign a "1" to the method requiring the fewest number of function evalua-

tions (call this number probmin); to the other two methods we assign the

number of function evaluations they required divided by probmin. If a method

failed to solve the problem in 500 iterations or gave up, an F (for failure) is

recorded. The final column contains probmih. For example, if the line search,

dogleg, and hookstep require it. 10, and 12 function evaluations respectively,

the row of numbers would be 1.1. 1, 1.2, 10. The last column allows the table to

show absolute as well as relative data. The bottom three lines of Table 7.2 con-

tain the mean. variance, and standard deviation of the first three columns. Our

method of reporting results obscures the fact that occasionally one method

finds the solution more accurately than another, due to the variety of stopping

conditions. Such differences were rare and would not affect our conclusions;

moreover, the difference in final values of f (z) in such cases were never more

than one order of magnitude.

The main conclusion we draw from Table 7.2 was stated above: there is very

little overall difference between the three step selection strategies. Each

method solved most but not all of the test problems; the difference in the

number of failures probably is insignificant. The standard deviations of the

three columns suggest that the differences between the three means is
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statistically insignificant. Indeed, different implementations of the three stra-

tegies might lead to a different ordering of the means.

Table 7.3 summarizes in identical fashion the comparison between line

search, dogleg, and hookstep using finite difference gradients and secant (BFGS)

Hessian approximations. The bottom lines again indicate no significant

difference between the three approaches. It may be significant that the line

search method had no failures in this case while the other two methods had
several. There were several cases when one method required more than the

minimum number of function evaluations but got a significantly more accurate

answer (more than two orders of magnitude difference in the final / (z)); in

these cases, this method also is given a score of 1 in Table 7.3, with the actual

rating given in parentheses.

The set of test problems in Tables 7.2 and 7.3 is very similar to the set used

by Gay [1982]. We attempted to run each minimization problem in More'. Gar-

bow, and Hillstrom [1981] from the standard starting point z0 . from 10 xo, and

from 100 z0 . In some cases the latter runs are omitted. Most often this is

because the function overflowed at the starting point and occasionally because

the problem was too expensive to run or because no method could solve it. On

some problems, erroneous finite difference derivative calculations cause all our

methods to fail; an example is Brown's badly scaled function. where the scales

of the starting and optimal points differ by six orders of magnitude.

Tables 7.2 and 7.3 do not indicate the CPU times required by the various

methods. This information is reported in Weiss [1980] and was accumulated for

our final tests as well. For the lower dimensional test problems, these times give

a rough indication of the overhead cost per iteration of each method. For the

larger problems, the times become dominated by the evaluations of the test

function, since due to our use of finite differences there are many function

UP
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evaluations.

As might be expected, in general the line search method requires less time

per iteration than the dogleg, and the dogleg less than the hookstep. The

differences, however, are not very large. The dogleg occasionally takes as much

as 20-257 more time per iteration than the line search, but usually the

difference is 10% or less. The discrepancy probably is mainly due to the modu-

lar structure that causes the dogleg to require more subroutine calls per itera-

tion than the line search. The hookstep typically requires 20-30% more time per

iteration thanr the line search. An additional cost in the hookstep is the extra

matrix factorizations that are sometimes required. On most practical problems

we have helped to solve, the objective function was sufficiently expensive to

evaluate that these differences in algorithmic overhead were incidental.

The stopping tolerances used in the tests reported in Tables 7.2 and 7.3 are

not overly stringent. All the successful runs in Tables 7.2 and 7.3 stop because

they satisfy either

max I(V (z+)) I * maxi I (z+) I. twz i <_gradtol (7.1)M maxtIf(x+) .vpf J

or

max ( zc sttl (7.2)bs-nmaXJ I (Z+),. W:

where the scaling parameters typzt and tjpf have the default value I In all

cases. The stopping tolerance values were gradtol = 10- 5 and steptal =0 -1 .

which are typical of the tolerances we see used in practice. Gay [1982] in his

tests used much tighter tolerances. We also ran the problems in Tables 7.2 and

4 7.3 with grwdtol = 10 -10. Since we are using finite difference gradients, this

tolerance often is near the limit of the attainable accuracy, and significantly

more iterations often were required. The only noticeable difference in the com-

parative results, however, is that the performance of the hookstep often
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deteriorated more than the performance of the other two methods. This may be

because, close to the solution, the hookstep makes more use of the (inaccurate)

gradient than do the other two methods.

Finally. it is interesting to compare the finite difference Hessian method

with the secant approximation method when the same step selection strategy is

utilized. In 78 of 102 cases (34 problems with 3 step selection strategies each).

the finite difference Hessian method required fewer iterations than the secant

method. This confirms the conventional wisdom that second derivative methods

are usually, but not always, less expensive than secant methods if function

evaluation is sufficiently inexpensive that algorithmic overhead is the overriding

cost. On the other hand, the secant method required fewer total function

evaluations (including the function evaluations used by finite differences) in all

but 16 of the 102 cases. The 16 include all 9 runs of the Brown-Dennis problem

and only 7 other cases. This again confirms the conventional wisdom that secant

methods usually are more efficient than finite difference Hessian methods on

problems where function evaluation is expensive and analytic Hessians are not

available.

* p.
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Table 7.1 - Comparison between performance of algorithms using
analytic vs. finite difference derivatives

Function Method of derivative Iterations / Function evaluations by

evaluations

Line Search Dogleg Hookstep

Analytic gradient and Hessian 24 / 33 21 / 25 22 / 27
Rosen- Finite diff. gradient and Hessian 23 / 30 21 / 25 21 / 25
brock

BFGS, analytic gradient 23 / 30 44 / 64 40/ 60
BFGS. finite diff. gradient 23 / 30 43 / 60 41 / 63

Analytic gradient and Hessian 15 / 16 15 / 17 15 / 16
Finite diff. gradient and Hessian 15 / 16 15 / 17 15/ 16

Powell
BFGS, analytic gradient 48/ 54 42 / 51 41 / 48
BFGS. finite diff. gradient 44 / 70 44 / 53 41 / 48

Analytic gradient and Hessian 58 / 92 36 / 40 40 / 46
Finite diff. gradient and Hessian 56 / 90 37 / 41 43 / 52

* Wood
BFGS, analytic gradient 32 / 40 42 / 57 41 / 52

BFGS, finite diff. gradient 32 / 40 42 / 51 46 / 68

* switched to central difference gradients

lip-
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Table 7.2 - Comparative test results using finite difference
gradients and Hessians

. Function n Starting Multiple of minimum Minimum
point function evaluations function

evaluationsLine Search Dogleg Hookstep

Beale 2 Xo  1 1.28 1.40 60 r
1OZO F I F 222Helical 3 ze  1.44 1 1.2 135valley 1OZO 1.48 1.45 1 18710OZe 1 1.02 1 188Gaussian 3 Z0 1 1.06 1 17Box 3D 3 ZO  1.64 F 1 192Wood 4 :0 1.55 1 1.17 711
1Z 1.34 1 1.08 864n 100 1 1.10 1.06 888

Brown - Z0 1 1.14 1.01 138Dennis lOX 1 1.08 1.08 252
10OO 1 1 1 3664 Biggs Exp 6 ZO F F F 17008Watson 9 Zo F F 1 2384Extended 10 M0  1.10 1 1 1610Rosen- 10:0 1.49 1 1.09 3671brock 1OOe F 1.26 1 11672Extend 8 Z e  1 1 1 804Powell 1O0x 1 1 1 1069 USingular 10O:0 1 1 1 1387Penalty I 10 Zo 1.24 1.63 1 2294
IOXo 1.16 1 1 2901
100a0 1.12 1 1.02 3280Penalty II 10 zo 1.15 1 1.08 6708
lOZo 1.10 1 1.05 718W10O0 1.11 1 1.06 7623 rVariable 10 ze  1 1 1 1151Dimension 1OZO .1 1 1 1379
100:0 1.08 1.04 1 1918Trigono- 10 X e  1 1.88 1 695metric 10Ze 1.20 1 1.20 1880lOOzO F 1.20 1 1075 PChebyquad 9 X0 1.06 1.06 1 2252

Failures 5 3 2
Successes 29 31 32Mean of successes 1.147 1.103 1.047 rVariance of successes 0.0368 0.0411 0.00738Standard deviation of 0.195 0.206 0.0873

successes

.01
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I* Table 7.3 - Comparative test results using finite difference
gradients and BFGS Hessian approximations

* Function n Starting Multiple of minimum Minimum
point function evaluations function

evaluations
Line Search Dogleg Hookstep

Beale 2 z e  1.04 1 1.02 51
1OX 0  1.10 1 1.10 136

Helical 3 MO  1 (1.11) 1.04 1 117
* valley 1X0z 1.01 1 1.05 126

100X 0  1 1.09 1.13 123
Gaussian 3 ZO 1.20 1 1.45 20
Box 3D 3 Zo 1.25 1 1.11 118
Wood .4 10 1 1.34 1.65 172

lOzo 1 1(1.52) 1.43 302
100xo 1.16 1.09 1 511

Brown - 4 Ze 1 1.03 1.03 169
Dennis 1 0z o  1 1.01 1.01 308

100ZO 1 1 1 458
Biggs Exp 6 Zo 1 1.14 1.07 309
Watson 9 Zo 1.08 1.01 1 1302
Extended 10 Z0 1 (1.30) 1.01 1 495

Rosen- 10Zo 1(1.65) 1.34 1 680
brock 10O0zo 1 (1.3'3) 1 1.16 1746

Extend 8 Xo  1.22 1(1.08) 1 384
Powell lOzo 1(1.37) 1.01 1 828
Singular 10OZo 1.01 1 1.50 1298

Penalty 1 10 Zo 1 F F 1756
10o 1.18 1 1.12 1753
100Zo 1 F F 2259

Penalty 11 10 X0 1.08 1 1.03 271
10zo 1.76 2.12 1 2531

10Ozo 1.07 1 1.05 5293
Variable 10 Xo  1.13 1.06 1 171

Dimension 10ZO 1.06 1(1.58) 1 544
10Ozo 1 [1] F 1708

Trigono- 10 xo 1.03 1 1.03 298
metric 10ZO 1 1.18 1.18 965

lOOzo 1.68 [1.07] 1 450
Chebyquad 9 : o  1.14 1 1 234

Failures 0 0[+2] 3
Successes 34 32 [-2] 31
Mean of successes 1.094 1.082 1.101
Variance of successes 0.0293 0.0452 0.0281
Standard deviation of 0.174 0.216 0.170

successes



Number of times found
signifIcantly lower
function value than530
other method but
required more iterations

Means if parenthesized 1.145 1.122 1.101
values used

Variance 0.0396 0.0576 0*02811
Standard deviation 0,202 0.244 ~0.170 -

-]-Close to, but not at, solution
Excluded from summary statistics
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